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Inertial effects on reactive particles advected by turbulence
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We study the problem of the advection of passive particles with inertia in a two-dimensional, synthetic, and
stationary turbulent flow. The asymptotic analytical result and numerical simulations show the importance of
inertial bias in collecting the particles preferentially in certain regions of the flow, depending on their density
relative to that of the flow. We also study how these aggregates are affected when a simple chemical reaction
mechanism is introduced through a Eulerian scheme. We find that inertia can be responsible for maintaining a
stationary concentration pattern even under nonfavorable reactive conditions or destroying it under favorable
ones.
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I. INTRODUCTION

Advection of particles by turbulent flows can be cons
ered as one of the most interesting problems in fluid mech
ics, and a basic issue in environmental and enginee
fields. The mixing efficiency of such flows has been an o
ject of study for years and the idea that turbulence is a g
mixing mechanism is today inconsistent with experimen
observations that show the existence of particle aggrega
patterns even in the most turbulent flows. This is related
the fact that turbulent flows are clearly characterized
structure and underlying coherence@1#. Parallel to this find-
ing, numerical simulations of the dispersion of passively
vected particles in two-dimensional~2D! kinematic turbu-
lence@2,3# show a clustering feature proving the poor mixin
ability of such flows.

This aggregation phenomenon is even more dram
when considering nonpassively advected particles, i.e.,
ing into account inertial effects. In this case, particles do
follow the flow lines of the fluid exactly, and therefore, ev
under an incompressible turbulent flow, an initially homo
enized condition segregates and particles tend to accum
in certain regions of the advecting field. The existence a
characterization of such regions@4#, as well as the study o
the motion of particles in a turbulent fluid, are keys to t
understanding of a large variety of problems like the settl
of aerosol particles@5,6#, dispersion of pollutants in the at
mosphere, distribution of planktonic organisms in the oce
@7#, etc.

Many numerical and analytical approaches have been
voted to studying the motion of particles in turbulent flo
fields. It is well known that the relation between the dens
of the fluid and that of the advected particles largely de
mines the zones of the flow where the particles accumul
In this paper, we reconsider this problem using a synthe
two-dimensional turbulent flow with some prescribed sta
tical properties. In Sec. II we present the flow and a br
introduction to the procedure through which we generate
In Sec. III we present the Lagrangian scheme to study
segregation of heavy and light particles under turbul
1063-651X/2001/64~2!/026307~9!/$20.00 64 0263
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flows, also including molecular diffusion. As well as chec
ing the validity of our synthetic turbulent field in reproducin
the already known behavior of inertial particles advected
turbulence, we also study the effects of inertia when the
vected particles are able to react autocatalytically in so
way. To study this problem we first move from a Lagrangi
scheme to a Eulerian approach. The details, approximati
and numerical procedure of such an approach are descr
in Sec. IV. Once the Eulerian scheme is implemented
include a reaction term with creation and annihilation con
butions, and we proceed to numerically study it for differe
particular situations in Sec. V. In particular, we show that t
inertial drift can permanently sustain a nonzero mean c
centration pattern under nonfavorable reaction-diffusion c
ditions for heavy particles and, contrarily, can wash ou
system of light particles even under favorable reactio
diffusion conditions.

II. SYNTHETIC VELOCITY FIELD

We work with a statistically homogeneous, isotropic, a
stationary two-dimensional velocity field which represent
‘‘synthetic’’ or kinematic turbulent flow@8#. This flow corre-
sponds to the velocity of the elements of fluid where t
particles are immersed, and it is not supposed to be affe
by them. However, the presence of inertia makes the velo
of these particles differ from the velocity of the fluid at th
particle position. In order to distinguish between the tw
velocities, we denote the fluid velocity byUi , j @since its gen-
eration procedure is discretized in space using a square
tice (i , j )], whereas when referring to the particles veloc
we will use V i , j or V(Xn) ~depending on whether we ar
using a Eulerian or a Lagrangian scheme, respectively!.

The generation of the turbulent flow comes from the tw
dimensional simulation of a Langevin equation for t
stream functionh(r ,t),

]h~r ,t !

]t
5n0¹2h~r ,t !1Q@l2¹2#“•z~r ,t !, ~1!
©2001 The American Physical Society07-1
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where n0 stands for the kinematic viscosity andQ@l2¹2#
denotes an operator that controls the spatial structure o
flow, with l its typical correlation length. Furthermore,z
(r ,t) represents a Gaussian white-noise field with zero m
value and whose covariance is given by

^z i~r 8,t8!z j~r 9,t9!&52e0n0d~ t82t9!d~r 82r 8!d i j ~2!

wheree0 is the parameter that determines the intensity of
noise and further on that of the mimicked turbulent flo
This Langevin equation can be formally integrated in Four
space to get the temporal evolution of the stream funct
Our technique corresponds to building up the flow field fro
its independent Fourier modes, and this implies chang
from an intrinsic randomness~associated with the comple
behavior resulting from the nonlinearity of the Navier-Stok
equation! to a system of independent Fourier modes coup
to an external spatiotemporal noise with prescribed statis
characteristics. Therefore, the incompressible tw
dimensional velocity fieldUi , j follows from the stream func-
tion,

Ui , j~ t !5U~r i , j ,t !5S 2
]h~r i , j ,t !

]y
,

]h~r i , j ,t !

]x D . ~3!

This synthetic fluid flow is characterized by three ba
well-defined statistical properties:u0

2, the intensity of the
flow, l 0, the length correlation of the flow, andt0, the time
correlation of the flow@8#. These flow parameters are e
pressed in terms of the velocity correlation function, whi
in turn is formally associated with the energy spectru
~which depends on the form of the operatorQ), and depends
explicitly on the input parametersn0 , e0, and l. In this
paper we consider a flow with the Kraichnan spectrum@9#. A
detailed presentation of the algorithm just introduced
simulate turbulent flows can be found in@8#.

For the sake of simplicity, and in order to avoid the ex
tence of a great number of temporal scales, we take a fro
flow, so that we have fixedt05` in our flow simulations.
The whole procedure is discretized in space using a sq
lattice of N3N points and unit spacingDr . In all the simu-
lations in this paper,N5128 andDr 50.5.

III. LAGRANGIAN SCHEME

A visual and suitable technique to study particle mixing
by means of the Lagrangian scheme. This approach has
used in most of the literature on this topic. In this section
present the most relevant aspects of the problem of ine
particles advected by turbulence using the proposed synth
turbulent field.

A. Model and equations

According to a Lagrangian description of the system,
follow the dynamics of a given set of particles by solving

dXn

dt
5Vn , ~4!
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where the subscriptn denotes the particle label,Xn stands for
its position, andVn its velocity.

Our starting point in order to determine the influence
the fluid velocity on the particle trajectory is the comple
version of the equation of motion for a rigid sphere in a flo
proposed in@10#. This equation reads

mp

dVn

dt
5mf

DU~Xn!

Dt
16pam@U~Xn!2Vn#

2
mf

2 S dVn

dt
2

dU~Xn!

dt D
26pa2mE

2}

t d@Vn2U~Xn!#/dt

Apn~ t2t!
dt, ~5!

where mp is the mass of the particle,a corresponds to its
diameter,mf is the mass of the fluid in the spherical volum
displaced by the advected particle, andm andn are the dy-
namic and kinematic viscosities, respectively.U(Xn) is the
flow velocity at the point where the particlen is located.
Since our fluid flow is generated using a discrete latticeUi , j ,
we have to interpolate these values using a bilinear form
order to getU(Xn) @3#.

Notice that we distinguish between two different time d
rivatives:d/dt is used to denote a time derivative followin
the particle motion, whereasD/Dt corresponds to a time
derivative following a fluid element,

DU

Dt
5

]U

]t
1~U•“ !U. ~6!

Equation~5! is derived under the assumption that the p
ticle radius, its Reynolds number, and the velocity gradie
around it are very small@10#. It has also been assumed th
the particles are sufficiently small so that Faxen correcti
@11# have been neglected. The first term on the right is
Bernouilli term, and represents the force acting on the p
ticle from the undisturbed flow. The second contributi
stands for the viscous Stokes drag. The third term co
sponds to the added mass contribution, and the last one t
Basset history force@12#. In this paper we consider the cas
where the drag force dominates over other forces, so tha
Basset term can be neglected.

According to the intuitive idea that the added-mass te
stems from the force that the particle has to exert in orde
move the fluid out from its new position and since this effo
depends locally on the state of the fluid at that position,
decide to change the ‘‘particle derivative’’ to the ‘‘fluid de
rivative’’ for the flow field in this term. This change was firs
proposed by Taylor@13#, noticed by Autonet al. @14#, and
assumed as correct in much further work@15#. Including all
the former approximations and changes, Eq.~5! now reads

S mp1
mf

2 D dVn

dt
56pam@U~Xn!2V#1

3

2
mf

DU~Xn!

Dt
.

~7!
7-2
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INERTIAL EFFECTS ON REACTIVE PARTICLES . . . PHYSICAL REVIEW E 64 026307
Then if we substitute Eq.~6! into Eq. ~7!, taking into
account that our flow field does not change in time, and
rescale space, time, and velocity by the scale factorsl 0 ,
l 0 /u0, andu0, we obtain the final equation for the velocity o
a particle,

dVn

dt
5A@U~Xn!2Vn#1b@U~Xn!•“#U~Xn!. ~8!

For the sake of simplicity we keep the same notation a
the adimensionalization. We note here that all quantities p
ted in the figures of this paper are dimensionless.A hereafter
refers to the dimensionless inertia parameter defined as
ratio between the viscous and inertial forces,

A[S 6pam

mp1mf /2
D l 0

u0
, ~9!

and b is the relation between masses that determines
importance of the Bernouilli term,

b5
3mf

2mp1mf
. ~10!

We are interested in the cases of advected particles
which Eq. ~8! applies and the Stokes term dominatesA
.1). In this case, as we have already anticipated, the den
of the particles relative to that of the fluid is the releva
quantity that fixes the magnitude of the Bernouilli term an
in turn, controls the preferred directional motion of particle
Although other intermediate cases have been studied@12,15#,
we will focus here on the cases of either extremely heavy
extremely light advected particles. These two cases
show a very different aggregation behavior under turbulen

B. Asymptotic approach for an effective particle velocity field

Equation~8! cannot be solved analytically but it is po
sible to get reliable information following an asymptot
analysis introduced by Maxey@5#. In this reference, the Ber
nouilli term was not considered since only very heavy p
ticles were studied. Here we include this term in order
study also the case of particles lighter than the fluid. We s
with the formal integration of the particle motion followin
Eqs. ~4! and ~8!. As A is large, one eliminates exponenti
transients and by differentiation the following expression
obtained for the velocity of the particle:

dX~ t !

dt
5U~X!1

b

A
@U~X!•“#U~X!2

1

A

dU~X!

dt

2
b

A2

d$@U~X!•“#U~X!%

dt
, ~11!

where the last term will be neglected because we cons
only the first order inA21.

As the time derivative ofU along the trajectoryX(t) can
be expressed as
02630
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dU~X!

dt
5

]U~X!

]t
1S dX

dt
•“ DU~X!, ~12!

it can also be expanded in powers of 1/A, giving to first order

dU~X!

dt
5

]U~X!

]t
1@U~X!•“#U~X!1OS 1

AD . ~13!

Considering that we are using a frozen flow]U/]t50, the
final expression for the particle velocity in Eq.~11! reads

dX~ t !

dt
5U~X!1S b21

A D @U~X!•“#U~X!. ~14!

This is an important result of this paper and according to
the particle velocity is completely determined only by
position, so that we can define an effective particle veloc
field v(r ) as

v~r !5U~r !1S b21

A D @U~r !•“#U~r !. ~15!

Before going ahead we have to realize the physical se
of the approximations considered to obtain Eq.~15!. By
eliminating the initial transients and taking only the first ter
in the expansion ofdU/dt, one assumes that the particle
rapidly adopt the velocity of the fluid around, since th
arrive at their new position with a velocity not very differe
from the fluid velocity at that point. Under this condition,
some sense, we ‘‘forget’’ about the particle trajectory a
therefore an effective particle velocity fieldv(r ) can be de-
fined, and, more important, it gives relevant informati
about the real motion of the particles.

As corroborated when performing numerical simulation
one of the most relevant effects of particle inertia consists
a drift of the particle motion away from the advecting flo
lines and, as a consequence, the aggregation of particle
certain regions of the flow field. This important effect is al
captured by the asymptotic approach developed above.
ticles will accumulate in those zones of the effective parti
velocity field with negative divergence,“•v,0. Notice that,
since our turbulent flow is incompressible,“•U50, pas-
sively advected particles do not get collected in any part
the system. However, the second term of Eq.~15! gives a
contribution that makes the particles follow a different pa
from that of the flow field lines. Starting from Eq.~15!, the
divergence ofv„r … can be expressed as a function of som
local properties of the original turbulent flowU,

“•v5
b21

A F2S22
uvu2

2 G , ~16!

whereS2 stands for the squared local strain rate of the fl
U and uvu2 corresponds to the squared modulus of its lo
vorticity.

From Eq.~16! it is very easy to distinguish two differen
cases. On one hand, heavy particles,b,1, will accumulate
in regions of the turbulence withS2.v2/4, i.e., low vorticity
and high strain rate@4–7#. On the other hand, light particles
7-3
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FIG. 1. Turbulent velocity fieldUi , j with u0
251 andl 056 used in most of the simulations of this paper~middle!. Particle velocity field

v(r ) in Eq. ~15!, in the case of generic heavy particlesb,1 ~first panel! and generic light particlesb.1 ~third panel!.
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b.1, collect in those zones of the turbulent flow withS2

,v2/4, i.e., high vorticity and low strain rate. These effec
can also be conjectured from the observation of Fig. 1 wh
the particle velocity fieldv„r … in Eq. ~15! is plotted for ge-
neric heavy and light particles. From this figure one eas
realizes~look at the arrows of the velocity field! that inertia
makes the heavy particles escape from inside the eddies
they get into a path of almost parallel flow lines. In contra
light particles seem to be attracted by the eddies of the
bulent flow. These results coming from the asymptotic
proach will be confirmed by a numerical study of partic
distributions presented in Sec. III C.

C. Numerical results

In order to get numerical results for the motion of pa
ticles under turbulence, we integrate Eqs.~4! and~8! using a
second order Runge-Kutta method with a time stepDt. For
the Lagrangian results in this paper we use a value ofDt
50.005. We choose a spatially random initial distribution
particles all over the system and the initial velocity of t
particles has been fixed to the velocity of the fluid at th
original positions. Our Lagrangian simulations contain ty
cally 1000 particles. Periodic boundary conditions apply
the velocity flow as well as for the motion of particles.

In most of the simulations with turbulence shown in th
paper, the frozen flow in the second panel of Fig. 1 is us
with u0

251, l 056, and an inertia parameterA56. This
value for A has been checked as the optimum in order

FIG. 2. Evolution of the particle motion forA56 and b50
~heavy particles!. Four snapshots for timest50, 60, 120, and 180
02630
re

y

til
,
r-
-

f

r
-
r

d,

o

observe strong effects of inertia in the motion of the advec
particles. Much smaller values would imply that the partic
respond very slowly to the changes in the flow during
motion. On the other hand, for much largerA, the particles
rapidly adopt the velocity of the flow and behave as a flu
element. Under both these extreme situations, particles s
no aggregation behavior.

The behavior of advected particles under these conditi
is shown in Figs. 2 and 3, for extremely heavy particlesb
50) and very light particles (b52), respectively. Compar
ing the two figures, one notices how the aggregation beh
ior is evident in both cases, but the regions where the p
ticles aggregate are quite different. For the case of den
particles, we observe a strong aggregation of moving p
ticles along very narrow paths. In contrast, the case of ligh
particles shows that they accumulate at rest inside the v
cal structures of the flow.

In Fig. 4 we observe the transition from the pattern
circulation paths to the clustered pattern corresponding
light particles. In this figure, snapshots att5180 are plotted
for systems withA56 but different values ofb.

At this point it is worth defining a variable which coul
give us quantitative information concerning the degree
particle aggregation. We denote this aggregation variable
P and we define it through

P~ t ![Fncells (
k51

ncells S N~k,t !

Npart
D 2G21

. ~17!

FIG. 3. Evolution of the particle motion forA56 and b52
~light particles!. Four snapshots for timest50, 60, 120, and 180.
7-4
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In order to compute this variable we have divided our syst
into ncells square cells with linear sizeLc ~in our results we
usencells5322). N(k,t) stands for the number of particle
inside the cellk at time t, andNpart is the total number of
particles. According to this definition,P gives the fraction of
the system occupied. In particular, the limits are 1 for
completely homogenized system and 1/ncells for a system
with all the particles collected in one cell. In our case, t
initial configuration of the system follows a Poissonian d
tribution, and therefore the value forP(0) will be smaller
than 1. In our initial Poissonian distributions of 1000 pa
ticles it can easily be checked thatP(0)50.5.

We compute theP function for several values ofb, and
average over 100 realizations of the flow and initial parti
distribution for each case. The results are shown in Fig
and we can see how for extreme values ofb the particles
show the largest tendency for preferential accumulation

FIG. 4. Snapshots at timet5180 for the advected particles us
ing A56. Left: from the upper to the lower panel,b50, 0.5, and
0.75. Right: from the upper to the lower panel,b51, 1.5, and 2.

FIG. 5. P(t) for A56 and different values for the Bernouil
parameterb. Averages over 100 realizations of the turbulent flo
have been performed for each curve.
02630
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the case ofb51, the system is rather homogenized, and t
result is coherent with Eq.~16! of our asymptotic approach
We have to point out, however, that cases withb near 1 also
show aggregation but after long times@of the order of (1
2mp /mf)

21]. In these situations, the Basset force a
Faxen corrections, which have been neglected here, pla
important role in the particle motion drift. A complete anal
sis of this situation can be found in@12#.

What is also important to notice from Fig. 5 is that aggr
gation is quantitatively stronger, in general, for light particl
than for heavy ones. This is caused by the fact that li
advected particles are attracted to ‘‘points’’ of the flow~cen-
ters of vortical structures!, whereas heavy ones circulate fo
lowing paths across the whole system size, avoiding fl
eddies.

The validity of the asymptotic approach in Eq.~16! is also
quantitatively checked in Fig. 6, where the Lagrangian av
age~particle average! for theS2 anduvu2 variables has been
plotted for simulations of heavy and light particles advec
by turbulence. We compare their behavior with a noniner
case. We can clearly see how the inertial heavy partic
accumulate in regions of higher strain rate and lower vor
ity than passively advected ones, whereas the light ones
to aggregate in regions of lower strain rate and higher v
ticity than the noninertial ones.

D. Diffusion in the Lagrangian scheme

Before moving to the Eulerian scheme, and in order
compare the Lagrangian results with the Eulerian ones
will be presented in the next section, we introduce molecu
diffusion in this discrete scheme by adding a noise term
Eq. ~4!,

dXn

dt
5Vn1A2Dhn~ t !, ~18!

wherehn corresponds to a zero-mean, Gaussian white no
andD is the diffusion coefficient. In Fig. 7 the correspondin

FIG. 6. Comparison of Lagrangian averaged strain rate and
ticity for the case of passively advected particles~thicker line!, and
two cases of inertial particles withA56: heavy particles,b50
~solid line!, and light particles,b52 ~dashed line!.
7-5
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concentration maps att5180 for the Lagrangian simulation
of heavy and light particles are shown forD50.25. The
effect of diffusion consists in making the aggregation zon
wider when comparing panels in Fig. 7 with the particle plo
of Figs. 2 and 3. The only difference between heavy and li
particles is that, in the case of heavy particles, a larger
fusion makes possible the opening of new paths for circu
ing particles that were not accessible in the simple determ
istic simulations ~Fig. 4!. On the other hand, for ligh
particles the final patterns are qualitatively the same but s
ply with more diffused clusters. This difference is importa
when introducing reaction in these systems.

IV. MOVING TO THE EULERIAN SCHEME

Up to this point the typical Lagrangian approach for ine
tial particles advected by a flow has been used. Neverthe
our main interest in what follows will consist in incorpora
ing reaction effects affecting the dispersed inertial partic
In order to include reaction we decided to change the part
description and move to a continuum scheme of particle c
centrations. The main reasons for using this approach are
following. First, the inclusion of a reaction term is rath
easy to implement as a part of an advection-reaction eq
tion, simplifying the numerical and analytical procedu
Second, there is a clear computational advantage: field
proaches usually need much less computational effort to
tain the same results than schemes based on particle dy
ics, because smaller systems and shorter CPU times
needed. On the other hand we have to be aware of the l
tations of this technique, since some approximations are
plicitly assumed when working with such mean field~meso-
scopic! approaches.

Our general Eulerian prescription is based on the react
diffusion-advection equation~from the law of conservation
of mass!,

]c~r ,t !

]t
52“•v„~r ,t !c~r ,t !…1D¹2c~r ,t !1R~r ,t !,

~19!

wherec(r ,t) corresponds to the local concentration,D is the
diffusion constant,R(r ,t) stands for the reaction term, an

FIG. 7. Concentration map att5180 for a diffusion coefficient
D50.25 andA56. Left: heavy particles (b50). Right: light par-
ticles (b52). In these Lagrangian simulations 106 particles are
advected and the concentration values have been obtained by
ing a cross-grained average.
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v(r ,t) is the velocity of the particles at the positionr at time
t. This velocity is related to the particle velocity field a
given in Eq.~8!,

dv~r ,t !

dt
5A@U~r ,t !2v~r ,t !#1b@U~r ,t !•“#U~r ,t !.

~20!

In general, the total time derivative of the variables as
ciated with the constituent particles of the system, and c
sidering that matter flows with a velocityv, can be decom-
posed as usual,

dv

dt
5

]v

]t
1~v•“ !v. ~21!

From Eqs.~20! and ~21! one obtains the temporal evolu
tion for the local particle velocity,

]v~r ,t !

]t
5A@U~r ,t !2v~r ,t !#2@v~r ,t !•“#v~r ,t !

1b@U~r ,t !•“#U~r ,t !. ~22!

Both Eqs.~19! and ~22! will determine the evolution of our
system.

Before going ahead we want to compare the Lagrang
and Eulerian prescriptions. The Eulerian scheme in Eq.~22!
generatesv as a function of the position and time. In an
case, since we work here with a frozen fluid flowU(r ), the
evolution of v will reach a stationary state that makes th
velocity depend only onr . At this point it is important to
remark, however, that the Eulerian prescription implicitly a
sumes a very strong condition. In particular, the assump
of the very existence of a particle velocity fieldv implies that
all the particles that reach the same position at the same
have the same velocity, no matter where they come fro
The same assumption is implicitly made in the analyti
approach in Sec. III B when obtaining the effective veloc
particle field within a Lagrangian scheme, Eq.~15!. There-
fore, both approximations stem from similar assumptio
and we have checked numerically that the velocity fieldv
obtained for the asymptotic Eulerian treatment in Eq.~22!
and the one following from the asymptotic approximation
the Lagrangian scheme, Eq.~15!, are rather similar. In othe
words, the Eulerian scheme should be considered as ap
priate only when referring to large values of the inertia p
rameterA.

A technically difficult step at this point is to discretiz
Eqs.~19! and~22!. In general, the discretization of an adve
tion term is rather complicated when trying to obtain go
numerical accuracy. Specifically, this problem is even wo
in systems leading to aggregation since in these cases
have to deal with high concentration gradients. We have c
sen the two-step Lax-Wendroff scheme, which is a sec
order in time method that defines the intermediate value
concentrations at half time steps at the half mesh points
complete description of this method in one dimension can
found in @16#. This discretization scheme has been exte
sively checked and compared with other explicit metho

ak-
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INERTIAL EFFECTS ON REACTIVE PARTICLES . . . PHYSICAL REVIEW E 64 026307
giving us the best numerical accuracy. The systems are
tially discretized using a square lattice of 1283128 cells and
unit spacingDr 50.5. In all the Eulerian simulationsDt
50.0002.

Before going ahead, we first reproduce the results
former sections for systems without reaction. Actually,
though the Lax-Wendroff scheme gives good numerical
curacy, a diffusion term is needed in order to assure num
cal convergence, at least when no reaction is considere
Eq. ~19!.

We start from a random initial distribution of concentr
tions by assigning a local concentrationci , j (t50) around 1.
Depending on the value ofD the behavior of the system
changes slightly. Figure 8 shows the concentration distri
tions for heavy particles~left! and light particles~right! for a
given diffusion constantD50.25. Gray scales have bee
used here: black for the higher concentrations and white
the smaller. The results obtained from this scheme are v
similar to the ones from the Lagrangian simulations w
diffusion; compare Fig. 8 with Fig. 7. For smallD the con-
centration distributions are rather similar to those obtaine
the simple deterministic Lagrangian simulations, and, si
larly to the Lagrangian simulations with diffusion, largerD
makes the aggregation zones get wider.

V. DIFFUSION ¿ ADVECTION ¿ REACTION PROBLEM

In this section we consider the whole problem of Eq.~19!;
namely, a system with reactive particles advected by
quenched kinematic turbulent flow and subject also to dif
sion. For the sake of simplicity, and as a formal example,

FIG. 8. Concentration plots att5180 for D50.25 andA56.
Left panel corresponds to heavy particles (b50) and right panel to
light particles (b52).
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take a reaction term that reads

R~r ,t !5Kc~r ,t !@12c~r ,t !#@c~r ,t !20.5#, ~23!

whereK is the reaction constant. This reaction term has th
steady states, two of them stable attractors at concentra
0 and 1. As a consequence of these bounds, the rea
avoids the large gradients of particle concentrations that
pear in the nonreactive case. This fact allows us to ob
rather good numerical accuracy even with small or zero
fusion coefficient.

The effect of the reaction term in the distribution of co
centrations consists of eliminating matter in those zo
wherec,0.5 ~first attractor atc50) and in building up and
maintaining a concentration close to 1 in those zones wh
c.0.5 ~second attractor atc51). Obviously, inertial drift is
going to accumulate particles in particular zones of the s
tem, and in those zones the second attractor will domin
transiently. The other, nonpreferred, zones will fall into t
first attractor and become empty. For this reason, pattern
concentration distributions will appear and will be similar,
least at intermediate times, to those appearing in the no
active case. Besides this general behavior, the different r
of diffusion, reaction constant, and the initial concentrati
are going to lead to some different dynamical effects in
temporal evolution of such systems.

In order to study the effects of diffusion and reaction w
ran a set of simulations with initial local concentrations ra
domly distributed around 0.6 and different values ofD and
K. As expected, with an initial mean concentration larg
than 0.5, in the absence of inertia, the system completely
up and falls into the attractor atc51. This is due to the fact
that the zones with local concentration larger than 0.5 fina
dominate whatever the values ofK and D. However, when
inertia is included, some of the regions of the system beco
empty, leading to new stationary states with smaller me
concentrations~in some cases quite close to zero values! than
in the case of passively advected reactive particles with
inertia. Diffusion and reaction will affect the temporal ev
lution of such aggregation patterns and, in turn, the ne
appearing stationary states. In Fig. 9 the temporal evolu
of the averaged concentration is presented for different
ues ofD andK, for heavy particles~left! and light particles
~right!. Obviously, for a givenK, the largerD is the more
zones of the system completely fall into the first attrac
(c50), leading to smaller stationary concentrations. T
e

.

d
s

,

FIG. 9. Temporal evolution of
the mean concentration with th
bistable reaction term. We fixA
56 and a random initial distribu-
tion of concentrations above 0.5
Different values ofD and K are
used. These curves were obtaine
by averaging over 10 realization
of the flow and initial distribu-
tions. Left panel: heavy particles
b50. Right panel: light particles,
b52.
7-7
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FIG. 10. Temporal evolution
of the mean concentration with
the bistable reaction term. We fix
A56 and a random initial distri-
bution of concentrations below
0.5. Different values ofD and K
are used. These curves have be
obtained by averaging over 10 re
alizations. Left panel: heavy par
ticles, b50. Right panel: light
particles,b52.
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can be checked by looking at the curves withK51 in both
panels of Fig. 9. On the other hand, competition betwe
diffusion D and reactionK is exhibited, and a larger mea
concentration value can be maintained for a givenD by fix-
ing a larger value for the reaction constantK. Comparing
both panels, one realizes that for light particles smaller
tionary mean concentrations are achieved as compared t
situation for heavy particles, and some systems even
completely empty despite the initial concentration be
larger than 0.5. This result is related to the fact that lig
particles accumulate in smaller regions of the system t
heavy particles, as we pointed out in former sections.

The opposite effect of inertia, at least for heavy particl
is achieved when the initial conditions correspond to an
tial mean concentration below 0.5. These cases are show
Fig. 10 where simulations for different diffusion coefficien
and reaction constants are plotted, again for heavy and
particles in the left and right panels, respectively. We obse
in both cases that with such small values for the local c
centrations, in the absence of inertia, the system falls into
first attractor and becomes totally empty~whatever the val-
ues ofD and K). However, for the case of heavy particle
the presence of inertia makes the particles collect in so
places where the concentration threshold atc50.5 can be
exceeded and consequently a segregation pattern can re
for ever~at least for not very large values ofD). This idea is
enforced by looking at the mean concentration curves plo
in the left panel of Fig. 10 forK51 and different values o
D. Again, a large value ofD can be compensated by fixing
large enough value forK ~for instance, in the case of heav
particles, a higher mean concentration forD50.01 is at-
tained by increasingK from 1 to 3). This effect was no
obtained for any set of values (K,D) for light particles. In
these latter cases particles are always attracted to such
regions of the system as can be easily annihilated by reac
if we start from a mean concentration below 0.5.

Finally, in Fig. 11 cases for heavy particles are sho
with different initial mean concentrationsc0 but for the same
inertia, flow, diffusion, and reaction parameter values. As
have already pointed out, in the absence of inertia, the c
with c0,0.5 fall into the first attractor and the system b
comes totally empty, whereas the cases withc0.0.5 fall into
the second attractor, corresponding to a local concentra
equal to 1 in the whole system. However, the existence
inertia makes these heavy particles achieve intermed
states of a stationary concentration. The larger the in
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mean concentration, the more mass is maintained at l
time, but always smaller thanc51. On the other hand, whe
starting from a rather smallc0 the system cannot sustai
even a very small concentration. In an interval of initial co
centration aroundc050.5 the final state does not depend
this value.

The main effect we want to stress from all the resu
presented in this section is that inertia can maintain a m
concentration of heavy particles in our system despite
fact that the reaction and diffusion conditions are nonfav
able and try to make the system empty. On the contr
when the conditions are favorable in the absence of ine
the inclusion of the Stokes force reduces and even ma
vanish the final stationary concentration. For light particl
however, inertial drift always has a destructive effect wh
combined with reaction. For the most favorable cases,c0
.0.5, a very low~near zero! stationary mean concentratio
is reached. In contrast to the cases with heavy particles,
nonzero final concentration can be reached for light partic
when starting fromc0,0.5. This is easily explained becaus
heavy particles accumulate in paths along the system,
light particles aggregate in a few spots at the center of
flow eddies. So it is clearly shown how inertia will determin

FIG. 11. Temporal evolution of the mean concentration with
bistable reaction term. We use a random initial distribution of co
centrations with mean values equal to 0.8, 0.6, 0.55, 0.45, and
The same values for the other parameters are used:D50.01 and
K53. Thicker lines correspond to the cases with inertia (A56) and
single lines to the cases without inertia. These curves have b
obtained by averaging over 10 realizations. All the cases corresp
to heavy particles withb50.
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the long-time behavior of reactive particles advected by
bulence, depending on their relative density.

VI. CONCLUSIONS

In this paper the problem of inertial particles advected
turbulence has been studied. First, we applied the Lagran
prescription to our model to characterize the presence o
aggregation behavior for heavy and light particles. We a
extended the asymptotic approach developed by Maxey@5#
to the cases where the Bernouilli term has to be conside
~light particles! and we checked the validity of this approx
mation for light and heavy particles with our numeric
simulations. We analyzed how regions of the flow whe
particles accumulate are related to flow properties. He
particles escape from the flow eddies and circulate follow
thin paths between them. In contrast, light particles are
tracted by the regions of turbulence with high vorticity a
remain accumulated inside the vortical structures of the fl

In the second part of the paper we extended our mode
particles with inertia to a Eulerian prescription. We fou
d

-
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good agreement between the results of both Lagrangian
Eulerian schemes, and we studied under what conditions
continuous method is valid. As an application of the Euler
scheme, we considered chemical reaction effects betwee
advected particles. We examined the importance of diffus
and inertia in these systems and found that inertia is resp
sible for maintaining a stationary concentration pattern
heavy particles even under nonfavorable reactive situatio
In contrast, for light particles, inertia can wash out the s
tem even under favorable situations.
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