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Inertial effects on reactive particles advected by turbulence
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We study the problem of the advection of passive particles with inertia in a two-dimensional, synthetic, and
stationary turbulent flow. The asymptotic analytical result and numerical simulations show the importance of
inertial bias in collecting the particles preferentially in certain regions of the flow, depending on their density
relative to that of the flow. We also study how these aggregates are affected when a simple chemical reaction
mechanism is introduced through a Eulerian scheme. We find that inertia can be responsible for maintaining a
stationary concentration pattern even under nonfavorable reactive conditions or destroying it under favorable
ones.
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I. INTRODUCTION flows, also including molecular diffusion. As well as check-
ing the validity of our synthetic turbulent field in reproducing
Advection of particles by turbulent flows can be consid-the already known behavior of inertial particles advected by
ered as one of the most interesting problems in fluid mecharfurbulence, we also study the effects of inertia when the ad-
ics, and a basic issue in environmental and engineeringected particles are able to react autocatalytically in some
fields. The mixing efficiency of such flows has been an ob-Way. To study this problem we first move from a Lagrangian
ject of study for years and the idea that turbulence is a goodcheme to a Eulerian approach. The details, approximations,
mixing mechanism is today inconsistent with experimenta@nd numerical procedure of such an approach are described
observations that show the existence of particle aggregatioR S€c. IV. Once the Eulerian scheme is implemented we
patterns even in the most turbulent flows. This is related tdncl_ude a reaction term with creat|qn and anmh_|lat|on_contr|-
the fact that turbulent flows are clearly characterized byPutions, and we proceed to numerically study it for different
structure and underlying coherendd. Parallel to this find- partlpular .S|tuat|ons in Sec. V. In parjucular, we show that the
ing, numerical simulations of the dispersion of passively aginertial drift can permanently sustain a nonzero mean con-
vected particles in two-dimensioné2D) kinematic turbu- c_e_ntratlon pattern und_er nonfavorable re_actlon-d|ffu5|on con-
lence[2,3] show a clustering feature proving the poor mixing ditions for heavy particles and, contrarily, can wash out a
ability of such flows. system of I|g_h_t particles even under favorable reaction-
This aggregation phenomenon is even more dramati€liffusion conditions.
when considering nonpassively advected patrticles, i.e., tak-
ing into account inertial effects. In this case, particles do not
follow the flow lines of the fluid exactly, and therefore, even
under an incompressible turbulent flow, an initially homog-  We work with a statistically homogeneous, isotropic, and
enized condition segregates and particles tend to accumulageationary two-dimensional velocity field which represents a
in certain regions of the advecting field. The existence andsynthetic” or kinematic turbulent flow8]. This flow corre-
characterization of such regiofé], as well as the study of sponds to the velocity of the elements of fluid where the
the motion of particles in a turbulent fluid, are keys to theparticles are immersed, and it is not supposed to be affected
understanding of a large variety of problems like the settlingoy them. However, the presence of inertia makes the velocity
of aerosol particle$5,6], dispersion of pollutants in the at- of these particles differ from the velocity of the fluid at the
mosphere, distribution of planktonic organisms in the oceamarticle position. In order to distinguish between the two
[7], etc. velocities, we denote the fluid velocity ky ; [since its gen-
Many numerical and analytical approaches have been desration procedure is discretized in space using a square lat-
voted to studying the motion of particles in turbulent flow tice (i,j)], whereas when referring to the particles velocity
fields. It is well known that the relation between the densitywe will use V; ; or V(X,) (depending on whether we are
of the fluid and that of the advected particles largely deterusing a Eulerian or a Lagrangian scheme, respectively
mines the zones of the flow where the particles accumulate. The generation of the turbulent flow comes from the two-
In this paper, we reconsider this problem using a syntheticdimensional simulation of a Langevin equation for the
two-dimensional turbulent flow with some prescribed statisstream functiony(r,t),
tical properties. In Sec. Il we present the flow and a brief
introduction to the procedure through which we generate it. n(r D)
In Sec. Il we present the Lagrangian scheme to study the SERA 2 2y2
segregation of heavy and light particles under turbulent at = oV n(n O+ QINVAV-L(r.), @)

II. SYNTHETIC VELOCITY FIELD
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where v, stands for the kinematic viscosity ar@]\2V?] where the subscript denotes the particle labed,, stands for
denotes an operator that controls the spatial structure of thés position, andv,, its velocity.

flow, with X\ its typical correlation length. Furthermoré, Our starting point in order to determine the influence of
(r,t) represents a Gaussian white-noise field with zero meathe fluid velocity on the particle trajectory is the complete
value and whose covariance is given by version of the equation of motion for a rigid sphere in a flow

_ _ ) proposed i 10]. This equation reads
('(r' )2 (r" "))y =2eqvod(t’ —t")8(r" —r") Y (2)
dv, DU(X,)

wheree, is the parameter that determines the intensity of the My~ ~Mi g+ 8maulU(Xn) = Vi
noise and further on that of the mimicked turbulent flow.

This Langevin equation can be formally integrated in Fourier m; (dV,, dU(X,)

space to get the temporal evolution of the stream function. - 7( dt  dt )

Our technique corresponds to building up the flow field from
its independent Fourier modes, and this implies changing t d[V,—U(X,)]/dr
from an intrinsic randomnes&ssociated with the complex —6ma’u J
behavior resulting from the nonlinearity of the Navier-Stokes —e o (=)
equation to a system of independent Fourier modes coupled
to an external spatiotemporal noise with prescribed statisticavherem, is the mass of the particleg corresponds to its
characteristics. Therefore, the incompressible two-diameterm; is the mass of the fluid in the spherical volume
dimensional velocity fieldJ; ; follows from the stream func- displaced by the advected particle, gncand v are the dy-
tion, namic and kinematic viscosities, respectivall(X,) is the
flow velocity at the point where the particle is located.
an(ri;,t)  an(ri;,b Since our fluid flow is generated using a discrete lattige,
Ui j(0=U(ri;,0)={ — y % |- 3 we have to interpolate these values using a bilinear form in
order to getU(X,) [3].
This synthetic fluid flow is characterized by three basic Notice that we distinguish between two different time de-
well-defined statistical propertiesjg, the intensity of the rlvatlves_:d/dt is _used to denote a time derivative folloyvmg
flow, 1, the length correlation of the flow, artg, the time e Particle motion, whereaB/Dt corresponds to a time

correlation of the flow[8]. These flow parameters are ex- derivative following a fluid element,

pressed in terms of the velocity correlation function, which

in turn is formally associated with the energy spectrum E_ﬂ+ U-V)U 6

(which depends on the form of the opera@y, and depends Dt 4t (U-V)U. ©)

explicitly on the input parameters,, €5, and \. In this

paper we consider a flow with the Kraichnan spect{@inA Equation(5) is derived under the assumption that the par-

detailed presentation of the algorithm just introduced tojcie radius, its Reynolds number, and the velocity gradients

simulate turbulent flows can be found [i]. _ _around it are very small10]. It has also been assumed that
For the sake of simplicity, and in order to avoid the exis-ihe particles are sufficiently small so that Faxen corrections

tence of a great number of temporal scales, we take a froz§q 1] have been neglected. The first term on the right is the

flow, so that we have fixet, =< in our flow simulations.  gernoilli term, and represents the force acting on the par-

Th(_a whole procet_ﬂure is dlsc_retlzed_ In Space using a squakije from the undisturbed flow. The second contribution

lattice of NX N points and unit spacingr. In all the simu-  gtands for the viscous Stokes drag. The third term corre-

dr, (5

lations in this papeiN=128 andAr=0.5. sponds to the added mass contribution, and the last one to the
Basset history forcgl2]. In this paper we consider the cases
IIl. LAGRANGIAN SCHEME where the drag force dominates over other forces, so that the

. , ) ) .. . Basset term can be neglected.
A visual and suitable technique to study particle mixing is  according to the intuitive idea that the added-mass term
by means of the Lagrangian scheme. This approach has begms from the force that the particle has to exert in order to
used in most of the literature on this topic. In this section wey,qve the fluid out from its new position and since this effort

present the most relevant aspects of the problem of inertigfgpends locally on the state of the fluid at that position, we
particles advected by turbulence using the proposed synthetigacige to change the “particle derivative” to the “fluid de-

turbulent field. rivative” for the flow field in this term. This change was first
proposed by Taylof13], noticed by Autonet al. [14], and
A. Model and equations assumed as correct in much further woils]. Including all

According to a Lagrangian description of the system, Wethe former approximations and changes, &j).now reads
Mt
my+ —-

follow the dynamics of a given set of particles by solving
dv, s U =Y 3 DU(X,)
5 | gp ~6manlU(Xn) —V]+ smi—g—.

dt
@)

dX,,
dt :Vn 1 (4)
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Then if we substitute Eq(6) into Eq. (7), taking into dUu(X) aU(X) [dX
account that our flow field does not change in time, and we i o (HV) U(X), (12
rescale space, time, and velocity by the scale factgrs

Io/uo,_alnduo, we obtain the final equation for the velocity of i can also be expanded in powers of1giving to first order
a particle,

| U0 _ V0 U0 VU +0

dv
5t =AU =Vl + BLUX) - VIUXe). (8 aaa

:
INE (13

Considering that we are using a frozen fleW/dt=0, the
For the sake of simplicity we keep the same notation aftefinal expression for the particle velocity in E(l1) reads
the adimensionalization. We note here that all quantities plot-
ted in the figures of this paper are dimensionléskereafter dx(t) U(X) + B-1
refers to the dimensionless inertia parameter defined as the dt A
ratio between the viscous and inertial forces,

)[U(X)-V]U(X)- (14

This is an important result of this paper and according to it

6mrau \lo the particle velocity is completely determined only by its
=lmTmr2lo (9 position, so that we can define an effective particle velocity
p T A0 field v(r) as
and B is the relation between masses that determines the B—1
importance of the Bernouilli term, v(r)=U(r)+ T)[U(r).v]u(r)_ (15)
B= ﬂ (10) Before going ahead we have to realize the physical sense
2m,+my of the approximations considered to obtain Ef5). By

eliminating the initial transients and taking only the first term
We are interested in the cases of advected particles fan the expansion oflU/dt, one assumes that the particles
which Eqg. (8) applies and the Stokes term dominaté’s ( rapidly adopt the velocity of the fluid around, since they
>1). In this case, as we have already anticipated, the densigtrive at their new position with a velocity not very different
of the particles relative to that of the fluid is the relevantfrom the fluid velocity at that point. Under this condition, in
quantity that fixes the magnitude of the Bernouilli term and,some sense, we “forget” about the particle trajectory and
in turn, controls the preferred directional motion of particles.therefore an effective particle velocity fieldr) can be de-
Although other intermediate cases have been stydi2d5,  fined, and, more important, it gives relevant information
we will focus here on the cases of either extremely heavy oabout the real motion of the particles.
extremely light advected particles. These two cases will As corroborated when performing numerical simulations,
show a very different aggregation behavior under turbulencegne of the most relevant effects of particle inertia consists in
a drift of the particle motion away from the advecting flow
B. Asymptotic approach for an effective particle velocity field lines and, as a consequence, the aggregation of particles in
certain regions of the flow field. This important effect is also
. . . : ) >~ captured by the asymptotic approach developed above. Par-
sible to get reliable information following an asymptotic yqjes \yill accumulate in those zones of the effective particle

analysis introduced by Max€]. In this reference, the Ber- velocity field with negative divergenc¥,-v<<0. Notice that,

nouilli term was not considered since only very heavy Palgince our turbulent flow is incompressiblF,-U=0, pas-

ticles were studied. Here we mplude this term n order o ively advected particles do not get collected in any part of
study also the case of particles lighter than the fluid. We starfhe system. However, the second term of ELp) gives a
with the formal integra_tion of the parti_cle_z mation followin_g contribution that makés the particles follow a different path
Egs. (4) and (8). As A's large, one eliminates exponential from that of the flow field lines. Starting from EL5), the
transients and by differentiation the following expression isdivergence ofv(r) can be expressed as a function ,of some

obtained for the velocity of the particle: local properties of the original turbulent flow,

Equation(8) cannot be solved analytically but it is pos-

dX(t) B 1 dU(X) 2
gt YOO R IUCO-VIUGO =1 —4; V.ov= % 282 % , (16)
_ E d{[U(x)~V]U(X)}’ (11) whereS? stands for the squared local strain rate of the flow
A? dt U and|w|? corresponds to the squared modulus of its local
vorticity.
where the last term will be neglected because we consider From Eq.(16) it is very easy to distinguish two different
only the first order inA™1, cases. On one hand, heavy particlgs; 1, will accumulate
As the time derivative o) along the trajector)X(t) can in regions of the turbulence wits> w?/4, i.e., low vorticity
be expressed as and high strain ratf4—7]. On the other hand, light particles,
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FIG. 1. Turbulent velocity fieldJ; ; with u3=1 andl,=6 used in most of the simulations of this pageiddle). Particle velocity field
v(r) in Eq. (15), in the case of generic heavy particlgs:1 (first pane] and generic light particleg>1 (third panel.

B>1, collect in those zones of the turbulent flow wifi observe strong effects of inertia in the motion of the advected
<w?/4, i.e., high vorticity and low strain rate. These effectsparticles. Much smaller values would imply that the particles
can also be conjectured from the observation of Fig. 1 whereespond very slowly to the changes in the flow during its
the particle velocity fieldv(r) in Eq. (15) is plotted for ge- motion. On the other hand, for much larglr the particles
neric heavy and light particles. From this figure one easilyrapidly adopt the velocity of the flow and behave as a fluid
realizes(look at the arrows of the velocity fieldhat inertia  element. Under both these extreme situations, particles show
makes the heavy particles escape from inside the eddies unib aggregation behavior.

they get into a path of almost parallel flow lines. In contrast, The behavior of advected particles under these conditions
|Ight particles seem to be attracted by the eddies of the turrs shown in F|gs 2 and 3, for extreme|y heavy partidﬁs (
bulent flow. These results coming from the asymptotic ap-=0) and very light particles = 2), respectively. Compar-
proach will be confirmed by a numerical study of particle ing the two figures, one notices how the aggregation behav-

distributions presented in Sec. Il C. ior is evident in both cases, but the regions where the par-
ticles aggregate are quite different. For the case of denser
C. Numerical results particles, we observe a strong aggregation of moving par-

ticles along very narrow paths. In contrast, the case of lighter
particles shows that they accumulate at rest inside the vorti-
cal structures of the flow.

In Fig. 4 we observe the transition from the pattern of

In order to get numerical results for the motion of par-
ticles under turbulence, we integrate E@B.and(8) using a
second order Runge-Kutta method with a time shdp For

the Lagrangian results in this paper we use a valuabf . ; :
. R circulation paths to the clustered pattern corresponding to
=0.005. We choose a spatially random initial distribution of b b P g

) . : light particles. In this figure, snapshotstat 180 are plotted
particles all over the system and the initial velocity of the gnt p 9 b P

. . . . - for systems withA=6 but different values of3.
particles has been fixed to the velocity of the fluid at their At this point it is worth defining a variable which could

original positions. Our Lagrangian simulations contain typ"give us quantitative information concerning the degree of

cally 1000 particles. Periodic boundary conditions apply forparticle aggregation. We denote this aggregation variable as
the velocity flow as well as for the motion of particles. IT and we define it through

In most of the simulations with turbulence shown in this

paper, the frozen flow in the second panel of Fig. 1 is used, Neells | N(k, 1) 2 -1
with u3=1, 1,=6, and an inertia parametgk=6. This (1) =| Neers 2 ( N : ) } . (17)
value for A has been checked as the optimum in order to k=1 part

FIG. 2. Evolution of the particle motion foA=6 and =0 FIG. 3. Evolution of the particle motion foA=6 and =2
(heavy particles Four snapshots for timeés=0, 60, 120, and 180. (light particles. Four snapshots for times=0, 60, 120, and 180.
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FIG. 6. Comparison of Lagrangian averaged strain rate and vor-
ticity for the case of passively advected particl#scker line), and
two cases of inertial particles with=6: heavy particles=0
(solid line), and light particlesB=2 (dashed ling

FIG. 4. Snapshots at time= 180 for the advected particles us- the case of3=1, the system is rather homogenized, and this
ing A=6. Left: from the upper to the lower pangd=0, 0.5, and result is coherent with Eq16) of our asymptotic approach.
0.75. Right: from the upper to the lower pangk=1, 1.5, and 2.  We have to point out, however, that cases vthear 1 also

show aggregation but after long timésf the order of (1
In order to compute this variable we have divided our system- mp/mf)*l]. In these situations, the Basset force and
into nge s Square cells with linear sizke, (in our results we Faxen corrections, which have been neglected here, play an
usengens=32). N(k,t) stands for the number of particles important role in the particle motion drift. A complete analy-
inside the cellk at timet, andN,,, is the total number of sis of this situation can be found [42].
particles. According to this definitiol] gives the fraction of What is also important to notice from Fig. 5 is that aggre-
the system occupied. In particular, the limits are 1 for agation is quantitatively stronger, in general, for light particles
completely homogenized system and /s for a system than for heavy ones. This is caused by the fact that light
with all the particles collected in one cell. In our case, theadvected particles are attracted to “points” of the flwen-
initial configuration of the system follows a Poissonian dis-ters of vortical structurgswhereas heavy ones circulate fol-
tribution, and therefore the value féf(0) will be smaller lowing paths across the whole system size, avoiding flow
than 1. In our initial Poissonian distributions of 1000 par-eddies.
ticles it can easily be checked thHE{(0)=0.5. The validity of the asymptotic approach in Eg6) is also

We compute thdl function for several values g8, and  quantitatively checked in Fig. 6, where the Lagrangian aver-
average over 100 realizations of the flow and initial particleage(particle averagefor the S* and|w|? variables has been
distribution for each case. The results are shown in Fig. lotted for simulations of heavy and light particles advected
and we can see how for extreme valuespothe particles by turbulence. We compare their behavior with a noninertial

show the largest tendency for preferential accumulation. Irfase. We can clearly see how the inertial heavy particles
accumulate in regions of higher strain rate and lower vortic-

ity than passively advected ones, whereas the light ones tend

S — 0 . : ; )
10.00 e =025 to aggregate in regions of lower strain rate and higher vor-
e ticity than the noninertial ones.
—aB=1

s—8B=1.25
100 ¥ 3 D. Diffusion in the Lagrangian scheme

Before moving to the Eulerian scheme, and in order to
compare the Lagrangian results with the Eulerian ones that
will be presented in the next section, we introduce molecular
diffusion in this discrete scheme by adding a noise term in

Eq. (4),

()

R T ! dX
0 100 200 ; 300 400 500 d_tn:Vn+ \/Eﬂn(t), (18)

FIG. 5. II(t) for A=6 and different values for the Bernouilli

parameterd. Averages over 100 realizations of the turbulent flow where»,, corresponds to a zero-mean, Gaussian white noise,
have been performed for each curve. andD is the diffusion coefficient. In Fig. 7 the corresponding
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v(r,t) is the velocity of the particles at the positiorat time
t. This velocity is related to the particle velocity field as
given in Eq.(8),

dv(r,t)
T =A[U(r,t)—v(r,t)]+ B[ U(r,t)- V]U(r,t).

*. ¥ (20)

In general, the total time derivative of the variables asso-
ciated with the constituent particles of the system, and con-
sidering that matter flows with a velocity; can be decom-

FIG. 7. Concentration map &t 180 for a diffusion coefficient posed as usual,

D=0.25 andA=6. Left: heavy particles£=0). Right: light par-

ticles (3=2). In these Lagrangian simulations ®1particles are dV_ v

advected and the concentration values have been obtained by mak- dt ot +(v-V)v. (21)
ing a cross-grained average.

STl

. o _ From Egs.(20) and(21) one obtains the temporal evolu-
concentration maps at=180 for the Lagrangian simulations  tjon for the local particle velocity,

of heavy and light particles are shown fe&x=0.25. The

effect of diffusion consists in making the aggregation zones av(r,t)

wider when comparing panels in Fig. 7 with the particle plots o AU D=V ] = [v(r - Vvn

of Figs. 2 and 3. The only difference between heavy and light

particles is that, in the case of heavy particles, a larger dif- +BLU(r,t)- V]U(r,t). (22

fusion makes possible the opening of new paths for circulat- i ) i

ing particles that were not accessible in the simple determinBoth Egs.(19) and(22) will determine the evolution of our
istic simulations (Fig. 4). On the other hand, for light System. _ _
particles the final patterns are qualitatively the same but sim- Beéfore going ahead we want to compare the Lagrangian
ply with more diffused clusters. This difference is important@nd Eulerian prescriptions. The Eulerian scheme in(E2).

when introducing reaction in these systems. generates/ as a function of the position and time. In any
case, since we work here with a frozen fluid fldgr), the
IV. MOVING TO THE EULERIAN SCHEME evolution of v will reach a stationary state that makes this

velocity depend only onm. At this point it is important to
Up to this point the typical Lagrangian approach for iner- remark, however, that the I?ulenan prescription implicitly as-
tial particles advected by a flow has been used. Neverthelesa. '€S & Very strong CO”O"“OF‘- in part[culgr, the gssumphon
our main interest in what follows will consist in incorporat- of the very existence of a particle velomtylﬂeldmphes that .
ing reaction effects affecting the dispersed inertial particles:""II the particles that reach the same position at the same time

In order to include reaction we decided to change the particl ave the same velocity, no matter where they come from.

description and move to a continuum scheme of particle con—he same assumption is implicily made in the analytical

centrations. The main reasons for using this approach are tl‘?é)ﬁrolac? I|Tj SFT‘ICH. i BLwhen optalnmr? the effegtlv_lghvelocny
following. First, the inclusion of a reaction term is rather particle field within a Lagrangian scheme, E@5). There-

easy to implement as a part of an advection-reaction equa(gre’ both approximations stem from similar ass_umptions,
tion, simplifying the numerical and analytical procedure.and we have checked numerically that the velocity field

Second, there is a clear computational advantage: field a;?—btamed for the asymptotic Eulerian treatment in E2¢)

proaches usually need much less computational effort to ob@nd Ifhe one_foIIowfl]ng from tr;e asympttr?tlc apperX||matt|ﬁn N
tain the same results than schemes based on particle dynamSa agrangian scheme, Ed.5), are rather simuiar. fn other
ics, because smaller systems and shorter CPU times a ords, the Eulerian scheme should be considered as appro-

needed. On the other hand we have to be aware of the Iimpriate only when referring to large values of the inertia pa-
ameterA.

tations of this technique, since some approximations are im-< . e . L . .
g PP A technically difficult step at this point is to discretize

plicitly assumed when working with such mean fiéideso- Eqgs.(19) and(22). In general, the discretization of an advec-

scopig approaches. , ) . ) .
Our general Eulerian prescription is based on the reactiondO" term Is rather complicated when trying to obtain good

diffusion-advection equatioffrom the law of conservation _”“me“ca' accuracy. Specmcally,_ this _probl_em IS even worse
in systems leading to aggregation since in these cases we

of mass, have to deal with high concentration gradients. We have cho-
ac(r,t) 5 sen the two-step Lax-Wendroff scheme, which is a second
e = V.v((r,t)c(r,t))+DV=c(r,t) + R(r,t), order in time method that defines the intermediate values of

(19) concentrations at half time steps at the half mesh points. A

complete description of this method in one dimension can be

wherec(r,t) corresponds to the local concentrati@his the  found in [16]. This discretization scheme has been exten-
diffusion constantR(r,t) stands for the reaction term, and sively checked and compared with other explicit methods,
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1

take a reaction term that reads

R(r,t)=Kc(r,t)[1—c(r,t)][c(r,t)—0.5], (23

whereK is the reaction constant. This reaction term has three
steady states, two of them stable attractors at concentrations
0 and 1. As a consequence of these bounds, the reaction
avoids the large gradients of particle concentrations that ap-
pear in the nonreactive case. This fact allows us to obtain
rather good numerical accuracy even with small or zero dif-
fusion coefficient.

FIG. 8. Concentration plots 4t=180 for D=0.25 andA=6. The effect of the reaction term in the distribution of con-
Left panel corresponds to heavy particlgs=<(0) and right panel to  centrations consists of eliminating matter in those zones
light particles (3=2). wherec< 0.5 (first attractor at=0) and in building up and

maintaining a concentration close to 1 in those zones where
giving us the best numerical accuracy. The systems are spg=>0.5 (second attractor at=1). Obviously, inertial drift is
tially discretized using a square lattice of 22828 cells and  going to accumulate particles in particular zones of the sys-
unit spacingAr=0.5. In all the Eulerian simulationdt  tem, and in those zones the second attractor will dominate
=0.0002. transiently. The other, nonpreferred, zones will fall into the
Before going ahead, we first reproduce the results ofirst attractor and become empty. For this reason, patterns of
former sections for systems without reaction. Actually, al-concentration distributions will appear and will be similar, at
though the Lax-Wendroff scheme gives good numerical acteast at intermediate times, to those appearing in the nonre-
curacy, a diffusion term is needed in order to assure numerictive case. Besides this general behavior, the different roles
cal convergence, at least when no reaction is considered igf diffusion, reaction constant, and the initial concentration

Eq. (19). are going to lead to some different dynamical effects in the
We start from a random initial distribution of concentra- temporal evolution of such systems.
tions by assigning a local concentration (t=0) around 1. In order to study the effects of diffusion and reaction we

Depending' on the'value dd the behavior of th? system ran a set of simulations with initial local concentrations ran-
changes slightly. Figure 8 shows the concentration distribudomly distributed around 0.6 and different valuesDoéind
tions for heavy particleleft) and light particlegright) fora K. As expected, with an initial mean concentration larger
given diffusion constanD=0.25. Gray scales have been than 0.5, in the absence of inertia, the system completely fills
used here: black for the higher concentrations and white fogp and falls into the attractor at=1. This is due to the fact
the smaller. The results obtained from this scheme are verat the zones with local concentration larger than 0.5 finally
similar to the ones from the Lagrangian simulations withdominate whatever the values Kfand D. However, when
diffusion; compare Fig. 8 with Fig. 7. For smdll the con-  inertia is included, some of the regions of the system become
centration distributions are rather similar to those obtained irmpty, leading to new stationary states with smaller mean
the simple deterministic Lagrangian simulations, and, simiconcentrationgin some cases quite close to zero vajuban
larly to the Lagrangian simulations with diffusion, largér in the case of passively advected reactive particles without

makes the aggregation zones get wider. inertia. Diffusion and reaction will affect the temporal evo-
lution of such aggregation patterns and, in turn, the newly
V. DIFEUSION + ADVECTION + REACTION PROBLEM appearing stationary states. In Fig. 9 the temporal evolution

of the averaged concentration is presented for different val-
In this section we consider the whole problem of E); ues ofD andK, for heavy particlegleft) and light particles
namely, a system with reactive particles advected by daright). Obviously, for a giverK, the largerD is the more
guenched kinematic turbulent flow and subject also to diffuzones of the system completely fall into the first attractor
sion. For the sake of simplicity, and as a formal example, wgc=0), leading to smaller stationary concentrations. This

1 ' ‘ ‘ ‘ | 1 ' ‘ ‘ ‘ | FIG. 9. Temporal evolution of
4 the mean concentration with the

'§ — K=1,D=0, A=6
i . . .
08 } oot bistable reaction term. We fiA
—-- K=2,D=0.1, A6 =6 and a random initial distribu-

o K=1, D=0, no inerti . .
06 0, no inertia tion of concentrations above 0.5.

Different values ofD and K are
used. These curves were obtained
by averaging over 10 realizations
of the flow and initial distribu-
tions. Left panel: heavy particles,

‘ ‘ ‘ ‘ ‘ ‘ B=0. Right panel: light particles,
0 100 200 300 400 500 0 100 200 300 400 500 B =2.

<C>

0.4

0.2

~——
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0.5 T T T T 0.5

FIG. 10. Temporal evolution
of the mean concentration with
the bistable reaction term. We fix
A=6 and a random initial distri-
bution of concentrations below
0.5. Different values oD and K
are used. These curves have been
obtained by averaging over 10 re-
alizations. Left panel: heavy par-
ticles, B=0. Right panel: light
100 150 200 particles,3=2.

0.4 ===

AR X

.01
, no inertia

Do

D=0
D=0.

, D=0.01
D=0,
D=0,

e K=1,

0.3

<C>

0.2

0 100 200 300 400 500

can be checked by looking at the curves whitk=1 in both  mean concentration, the more mass is maintained at long
panels of Fig. 9. On the other hand, competition betweenime, but always smaller thar= 1. On the other hand, when
diffusion D and reactiorK is exhibited, and a larger mean starting from a rather smatt, the system cannot sustain
concentration value can be maintained for a giehy fix-  even a very small concentration. In an interval of initial con-
ing a larger value for the reaction constdtit Comparing  centration around,=0.5 the final state does not depend on
both panels, one realizes that for light particles smaller stathis value.
tionary mean concentrations are achieved as compared to the The main effect we want to stress from all the results
situation for heavy particles, and some systems even ggiresented in this section is that inertia can maintain a mean
completely empty despite the initial concentration beingconcentration of heavy particles in our system despite the
larger than 0.5. This result is related to the fact that lightfact that the reaction and diffusion conditions are nonfavor-
particles accumulate in smaller regions of the system thaable and try to make the system empty. On the contrary,
heavy particles, as we pointed out in former sections. when the conditions are favorable in the absence of inertia,
The opposite effect of inertia, at least for heavy particlesthe inclusion of the Stokes force reduces and even makes
is achieved when the initial conditions correspond to an inivanish the final stationary concentration. For light particles,
tial mean concentration below 0.5. These cases are shown kpwever, inertial drift always has a destructive effect when
Fig. 10 where simulations for different diffusion coefficients combined with reaction. For the most favorable casgs,
and reaction constants are plotted, again for heavy and light 0.5, a very low(near zer stationary mean concentration
particles in the left and right panels, respectively. We observés reached. In contrast to the cases with heavy particles, any
in both cases that with such small values for the local connonzero final concentration can be reached for light particles
centrations, in the absence of inertia, the system falls into th@/hen starting front,<0.5. This is easily explained because
first attractor and becomes totally emgtyhatever the val- heavy particles accumulate in paths along the system, but
ues ofD andK). However, for the case of heavy particles, light particles aggregate in a few spots at the center of the
the presence of inertia makes the particles collect in somglow eddies. So it is clearly shown how inertia will determine
places where the concentration thresholdcat0.5 can be
exceeded and consequently a segregation pattern can remain

for ever(at least for not very large values DBf). This idea is 1
enforced by looking at the mean concentration curves plotted
in the left panel of Fig. 10 foK=1 and different values of 08 +—= ¢,=0.55, no inertia |
D. Again, a large value db can be compensated by fixing a \\‘ — §°:3;2; e
large enough value fdK (for instance, in the case of heavy 061 N\ --- ;=055 A<

. . . . A \ —— =045, A<6
particles, a higher mean concentration @=0.01 is at- ¢ —-- C=0.4, A=6
tained by increasind< from 1 to 3). This effect was not LY N *+ =045, noinertia
obtained for any set of valueK(D) for light particles. In e
these latter cases particles are always attracted to such small 02f s 1
regions of the system as can be easily annihilated by reaction -
if we start from a mean concentration below 0.5. I

Finally, in Fig. 11 cases for heavy particles are shown 0 100 200 300 400 500 600

with different initial mean concentratiortg but for the same t

inertia, flow, d'ﬁl'_ls'on’ and .reactlon parametgr vaI_ues. As we FIG. 11. Temporal evolution of the mean concentration with the
have already pointed out, in the absence of inertia, the Casggaple reaction term. We use a random initial distribution of con-
with ¢,<0.5 fall into the first attractor and the system be- cenrations with mean values equal to 0.8, 0.6, 0.55, 0.45, and 0.4.

comes totally empty, whereas the cases wifh 0.5 fall into  The same values for the other parameters are UBed0.01 and
the second attractor, corresponding to a local concentratiok=3. Thicker lines correspond to the cases with inertia6) and

equal to 1 in the whole system. However, the existence O$ingle lines to the cases without inertia. These curves have been
inertia makes these heavy particles achieve intermediatebtained by averaging over 10 realizations. All the cases correspond
states of a stationary concentration. The larger the initiato heavy particles withl8=0.
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the long-time behavior of reactive particles advected by turgood agreement between the results of both Lagrangian and

bulence, depending on their relative density. Eulerian schemes, and we studied under what conditions the
continuous method is valid. As an application of the Eulerian
VI. CONCLUSIONS scheme, we considered chemical reaction effects between the

) o ] advected particles. We examined the importance of diffusion

In this paper the problem of inertial particles advected by, inertia in these systems and found that inertia is respon-
turbulence has been studied. First, we applied the Lagrangiagiple for maintaining a stationary concentration pattern of
prescription to our model to characterize the presence of aReayy particles even under nonfavorable reactive situations.
aggregation behavior for heavy and light particles. We alsqq contrast, for light particles, inertia can wash out the sys-

extended the asymptotic approach developed by M&%¢y tem even under favorable situations.
to the cases where the Bernouilli term has to be considered

(light particles and we checked the validity of this approxi-
mation for light and heavy particles with our numerical
simulations. We analyzed how regions of the flow where We acknowledge support from the DirecciGeneral de
particles accumulate are related to flow properties. Heavynvestigacim Cientfica y Tecnica(Spain under Projects No.
particles escape from the flow eddies and circulate followingBXX-2000-0638-C02-01 and No. BFM2000-0624, and from
thin paths between them. In contrast, light particles are atthe Comissionat per Universitats i Recerca de la Generalitat
tracted by the regions of turbulence with high vorticity andde Catalunya under Project No. 1999-SGR-00041. We also
remain accumulated inside the vortical structures of the flowacknowledge computing support from FundaCiatalana per

In the second part of the paper we extended our model od la Recerca. Enlightening and valuable discussions with M.
particles with inertia to a Eulerian prescription. We found Bees are gratefully acknowledged.
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